Resources
ACT-H2 Resources
-
J. Z. Soo, B. Gupta, A. Riaz, C. Jagadish, H. H. Tan, S. Karuturi. Facile Substrate-Agnostic Preparation of High-Performance Regenerative Water Splitting (Photo)Electrodes, Chemistry of Materials, 2022, 34, 15, 6792-6801, https://doi.org/10.1021/acs.chemmater.2c00932
Butson, J., Sharma, A., Chen, H., Wang, Y., Lee, Y., Varadhan, P., Tsampas, M.N., Zhao, C., Tricoli, A., Tan, H.H., Jagadish, C. and Karuturi, S.K., 2021. Surface-Structured Cocatalyst Foils Unraveling a Pathway to High-Performance Solar Water Splitting, Advanced Energy Materials 2021, 2102752. https://doi.org/10.1002/aenm.202102752
Y. Wang, A. Sharma, T. Duong, H. Arandiyan , T. Zhao, D. Zhang, Z. Su, M. Garbrecht, F. J. Beck, S. Karuturi, C. Zhao, and K. Catchpole, Direct Solar Hydrogen Generation at 20% Efficiency Using Low-Cost Materials, Advanced Energy Materials, 2021, 11, 2101053. https://doi.org/10.1002/aenm.202101053
Sharma, Astha, and Fiona J. Beck. “Quantifying and Comparing Fundamental Loss Mechanisms to Enable Solar-to-Hydrogen Conversion Efficiencies above 20% Using Perovskite–Silicon Tandem Absorbers.” Advanced energy and sustainability research 2.1 (2021): 2000039. https://doi.org/10.1002/aesr.202000039
D. Zhang, Y.X. Cao, S.K. Karuturi, M.Y. Du, M.Y. Liu, C.W. Xue, R.T. Chen, P. Wang, J Zhang*, J. Y.Shi*, S. Z. Frank Liu*, Enabling Unassisted Solar Water Splitting by Single-Junction Amorphous Silicon Photoelectrodes, ACS Appl. Energy Mater. 2020, 3, 5, 4629-4637. https://pubs.acs.org/doi/10.1021/acsaem.0c00296
S. Karuturi, H. Shen, A. Sharma, F. J. Beck, P. Varadhan, T. Duong, P. R. Narangari, D. Zhang, Y. Wan, J. He, H. H. Tan, C. Jagadish, K. Catchpole, Over 17% Efficiency Stand-Alone Solar Water Splitting Enabled by Perovskite-Silicon Tandem Absorbers, Advanced Energy Materials, 10, 28, 2000772, (2020). https://onlinelibrary.wiley.com/doi/abs/10.1002/aenm.202000772
A full list of our publications can be seen on the Publications page.
-
Direct Solar to Hydrogen: a pathway to carbon zero: https://www.youtube.com/watch?v=AUe2fHEEUWk&ab_channel=ANUTV
Our labs are featured in this video by the ANU: https://www.youtube.com/watch?v=Q37qPenOB9k&list=PLSELPFl0xuaTNEvRBOe0_F3PtU0jS-rmj&;index=4&ab_channel=ANUExperience
-
D. Zhang, J. Z. Soo, H. H. Tan, C. Jagadish, K. Catchpole, S. Karuturi. Earth-Abundant Amorphous Electrocatalysts for Electrochemical Hydrogen Production: A Review, Advanced Energy and Sustainability Research, (2021), 2, 2000071. https://doi.org/10.1002/aesr.202000071
Tournet, J., Lee, Y., Karuturi, S.K., Tan, H.H. and Jagadish, C., 2020. III–V Semiconductor Materials for Solar Hydrogen Production: Status and Prospects. ACS Energy Letters, 5(2), pp.611-622. https://doi.org/10.1021/acsenergylett.9b02582
Lu, H., Tournet, J., Dastafkan, K., Liu, Y., Hau Ng, Y., Karuturi, S.K., Zhao, C. and Yin, Z., 2021. Noble-metal-free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews 121 (17), pp. 10271–10366. https://doi.org/10.1021/acs.chemrev.0c01328
Global Resources
-
-
-
Energy technology perspectives 2023:
https://www.iea.org/reports/energy-technology-perspectives-2023Australia’s national hydrogen strategy:
National hydrogen roadmap: https://www.csiro.au/en/work-with-us/services/consultancy-strategic-advice-services/csiro-futures/energy-and-resources/national-hydrogen-roadmap
The future of hydrogen: https://www.iea.org/reports/the-future-of-hydrogen
Green hydrogen cost reduction – scaling up electrolysers to meet the 1.5 °C climate goal: https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction